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We present Maxwell equations with source terms for the electromagnetic field interacting with a moving
electron in a spin-orbit-coupled semiconductor heterostructure. We start with the eight-band kp model and
derive the electric and magnetic polarization vectors using the Gordon-type decomposition method. Next, we
present the kp effective Lagrangian for the nonparabolic conduction-band electrons interacting with electro-
magnetic field in semiconductor heterostructures with abrupt interfaces. This Lagrangian gives rise to the
Maxwell equations with source terms and boundary conditions at heterointerfaces, as well as equations for the
electron envelope wave function in the external electromagnetic field, together with appropriate boundary
conditions. As an example, we consider spin-orbit effects caused by the structure inversion asymmetry for the
conduction-electron states. We compute the intrinsic contribution to the electric polarization of the electron gas
in asymmetric quantum well in equilibrium and in the stationary spin Hall regime. We argue that this contri-
bution, as well as the intrinsic spin Hall current, are not cancelled by the elastic-scattering processes.
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I. INTRODUCTION

Spintronic is a rapidly developing and important field of
condensed-matter physics. The research is mainly concen-
trated on effects of electron-spin transport, spin accumula-
tion, and spin manipulation in nonsymmetric semiconductor
heterostructures with strong spin-orbit coupling. The early
predictions1–3 and recent experimental observations of the
spin Hall effect4,5 have inspired a huge number of theory
papers.6–8,10–17 This research is primarily concentrated on the
spin Hall current, which is a flux of carriers with opposite
spins in opposite directions perpendicular to the driving elec-
tric field. This current can be generated, for example, due to
the asymmetric scattering,1–3 the diffusion of the nonequilib-
rium spin,14,18 or due to the momentum dependent spin-orbit
splitting in the band structure.6,7,11 The latter effect is usually
called the intrinsic effect �as it is computed with an equilib-
rium distribution function� and it is characterized by the uni-
versal spin Hall conductivity.6,7,11

Several fundamental questions concerning the spin Hall
effect have inspired a wide discussion in the literature. It
concerns the definition of the electron-spin current12–16 and
the issue of spin Hall current cancellation in the stationary
regime.7–10,14 A good basis for treating these issues15–17 is the
relativistic Dirac equation for an electron interacting with the
electromagnetic �EM� field. This approach reveals a close
relation between the spin current and the electric polarization
vector. It also gives a new contribution to the spin transfer
torque coming from the interaction between the intrinsic
electric polarization and the external electric field.15

In the present paper, we describe an electron interacting
with the electromagnetic field and moving in semiconductor
heterostructures with strong spin-orbit coupling. We start
with the eight-band kp Kane model and derive the expres-
sions for the electric and magnetic polarization vectors, as
well as the effective kp Lagrangian for the conduction-band
electrons, in a semiconductor heterostructure with abrupt in-

terfaces. Using the least-action principle, we derive Maxwell
equations with source terms and boundary conditions for the
electromagnetic field at the interfaces, as well as equations
for the electron envelope wave function in external fields,
together with appropriate boundary conditions. As an ex-
ample, we consider the stationary state of the electron gas in
an asymmetric quantum well. We compute the intrinsic spin-
orbit contribution to the electric polarization in equilibrium
and in the spin Hall regime. We argue that the intrinsic elec-
tric polarization in the spin Hall regime corresponds to an
additional spin-orbit energy in the external electric field and,
therefore, it cannot be cancelled by extrinsic contributions.
Furthermore, the intrinsic spin Hall current does not vanish
in the stationary regime, while the vanishing of the spin
torque14 is maintained by additional contributions coming
from interaction between the equilibrium electric polariza-
tion and the external electric field.15 We also predict an ex-
istence of the intrinsic-induced magnetic charge Hall current
due to the inhomogeneous charge distribution in asymmetric
quantum well.

The paper is organized as follows. In Sec. II we review
some standard features of the Dirac equation. In Sec. III we
review the properties of the eight-band kp Kane model,
which includes an external electromagnetic field, and derive
the expressions for the electric and magnetic polarization
vectors. In Sec. IV we derive the effective kp Lagrangian for
the conduction-band electron interacting with external elec-
tromagnetic field and apply the least-action principle to
semiconductor heterostructures. In Sec. V we calculate the
intrinsic spin-orbit contribution to the electric polarization of
the electron gas in an asymmetric quantum well in equilib-
rium and stationary spin Hall regimes, as well as the
intrinsic-induced magnetic charge Hall current. In Sec. VI
we discuss the results and their relevance for the fundamen-
tal issues of the proper definition of the spin Hall current and
of its noncancellation in the stationary regime.
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II. ELECTROMAGNETIC POLARIZATION INDUCED
BY DIRAC ELECTRON

We start with the problem of a relativistic electron inter-
acting with the electromagnetic field in the vacuum. Maxwell
equations for the electric field E and magnetic induction B
can be written �in Gaussian units� as

� · E = 4��, � � B =
1

c

�E

�t
+

4�

c
J , �1�

� · B = 0, � � E = −
1

c

�B

�t
, �2�

where c is the velocity of light. The charge density � and the
current density J correspond to a single moving electron and
satisfy the continuity equation,

��

�t
+ � · J = 0. �3�

For a Dirac electron, �=e��� and J=ce������, where e
=−�e� is the free-electron charge and � is a four component
�bispinor� wave function satisfying the Dirac equation,

�i�
�

�t
− eV�� = �c� · � + mc2��� , �4�

� = � 0 �

� 0 �, � = �1̂ 0

0 − 1̂
�, 1̂ = �1 0

0 1� . �5�

Here m is the free-electron mass, �̂= ��̂x , �̂y , �̂z� are the
Pauli matrices, �=−i��−�e /c�A is the momentum operator,
and V and A are scalar and vector potentials of the electro-
magnetic fields E and B, respectively,

E = − ��A/�t� − �V, B = � � A . �6�

The Gordon decomposition is a way to split � and J into
convective and internal parts �Ref. 16� �=�c+�i and J=Jc
+Ji. The convective parts are given by

�c =
i�

2mc2��̄
��

�t
−

��̄

�t
�� −

eV

mc2�̄�� , �7�

Jc =
e

2m
��̄���� + ����̄��	 , �8�

where �̄=���. The internal parts have the form

�i = − � · �, Ji = c � � M +
��

�t
, �9�

where electric and magnetic polarizations � and M are given
by

� =
e�

2mc
�̄�− i��� ,

M =
e�

2mc
�̄��, � = �� 0

0 �
� . �10�

The convective and internal densities are separately con-
served: ��c,i /�t+� ·Jc,i=0. The internal density �i and cur-
rent Ji are the densities of the induced electric charge and the
induced electric current of a moving electron. Starting from
the Dirac Eq. �5� and its complex conjugate, we obtain the
continuity equation ��m /�t+� ·Jm=0, where �m=−� ·M is
the induced magnetic charge density and

Jm =
�M

�t
− c � � � �11�

is the induced magnetic charge current. Note that the induced
magnetic charge density �m and the corresponding current
density Jm, as well as the induced electric charge density �i
and the current density Ji, also appear in the classical elec-
trodynamics of moving media.19

One can introduce an electric displacement vector D=E
+4�� and a magnetic-field strength H=B−4�M and re-
write the Maxwell Eqs. �1� and �2� in the symmetric form as

� · D = 4��c, � � H =
1

c

�D

�t
+

4�

c
Jc, �12�

� · H = − 4��m, � � D = −
1

c

�H

�t
−

4�

c
Jm. �13�

These equations are similar to those presented in Ref. 20 and
show how the moving electron affect the electromagnetic
field via the induced electric and magnetic polarizations in
the media.

In the general case of dielectric and magnetic media, vec-
tors D and H are related to vectors E and B via

D = 	E + 4��, H = B/
 − 4�M . �14�

Here 	 and 
 are electric permittivity and magnetic conduc-
tivity of the media, respectively, and vectors � and M de-
scribe additional polarizations induced by a moving Dirac
electron.

While the Maxwell equations are universal, the particular
expressions for the source terms depend on the particular
model describing the moving electron. For a Dirac electron,
expressions �10� for � and M are exact. Approximate ex-
pressions for � and M in weakly relativistic limit were re-
cently obtained in Ref. 15. However, the Dirac equation or
its weakly relativistic limit cannot be directly applied to the
case of semiconductor heterostructures with strong spin-orbit
interaction.21 In the next section, we start with the eight-band
kp Kane model and we derive expressions for electric and
magnetic polarizations induced by the spin-orbit coupling of
conduction-band electrons.

III. KANE ELECTRON IN EXTERNAL
ELECTROMAGNETIC FIELD

The energy-band structure of cubic semiconductors near
the center of the first Brillouin zone can be described within
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the eight-band kp model.22,23 In homogeneous bulk semicon-
ductor, the full wave function can be expanded as22

��r� = 


=�1/2

�c

�r��S�u
 + 



=�1/2



�=x,z,z
�v�


 �r��R��u
,

�15�

where u1/2 and u−1/2 are the eigenfunctions of the spin opera-

tor Ŝ= �� /2��̂. �S� is the Bloch function of the conduction-
band edge at the  point of the Brillouin zone, which repre-
sents an eigenfunction of internal momentum I=0. �Rx�
��X�, �Ry���Y�, and �Rz���Z� are Bloch functions of the
valence-band edge at the  point of the Brillouin zone. Com-
binations of these functions ��Rx�� i�Ry�� /2 and �Rz� are
eigenfunctions of the internal momentum I=1 with projec-
tions on the z axis equal to �1 and 0, respectively �see Ref.
22�. Smooth functions �c

�1/2�r� are components of the
conduction-band spinor envelope function

�c = � �c
1/2

�c
−1/2 �

and �vx
�1/2�r�, �vy

�1/2�r�, and �vz
�1/2�r� are x ,y ,z components

of the valence-band spinor envelope vector

�v = � �v
1/2

�v
−1/2 � .

A. Basic equations

In the bulk, the eight-component envelope function
��r����c�r� ,�v�r�� is a solution of the Schrödinger
equation24–26

i�
�

�t
��c

�v
� = ĤKane��c

�v
� , �16�

ĤKane��c

�v
� =�

��2

2m
k̂2�c iP��k̂�v�

− iP�k̂�c �− Eg −
�

3
��v +

i�

3
� � �v

� .

�17�

Here the energy of electron states is measured with respect to
the bottom of the conduction band Ec=0, Eg=Ec−Ev is the
band-gap energy, � is the spin-orbit splitting of the valence

band, k̂=−i� is the wave vector, and P=−i��S�p̂z�Z� /m is the
Kane matrix element describing the coupling of the conduc-
tion and valence bands. The parameter � describes the con-
tribution to the electron effective mass mc, which is not re-
lated to the interaction with the valence band, while the k2

terms for the valence band are neglected. This is the so-
called eight-band Kane model with dispersion for electrons
only.24–26 This model allows to describe electron states with
energies in the conduction band. It takes into account spin-
orbit effects induced by the interaction with the valence band
in the presence of the structure inversion asymmetry.25 Bulk
inversion asymmetry terms are not included in the consider-
ation.

We introduce an expression

�l = − i�
��v

�t
− �P � �c, �18�

and rewrite the second vector equation of �16� and �17� as
�l= �Eg+ �

3 ��v− i�
3 ���v. In this way we express the

valence-band spinor vector �v and the vector product �
��v as

�v = C1�l + iC2��̂ � �l	 , �19�

� � �v = − 2iC2�l + �C1 − C2���̂ � �l	 , �20�

with the coefficients C1 and C2 given by

C1 �
3Eg + 2�

3Eg�Eg + ��
, C2 �

�

3Eg�Eg + ��
. �21�

To include the interaction with the electromagnetic field,
we replace �k=−i�� with �=−i��−e /cA and i�� /�t with
i�� /�t−eV in Eqs. �16�–�18� and we add the respective Zee-

man Kane Hamiltonian ĤZeeman �Ref. 25�,

ĤZeeman��c

�v
�

= � 1
2ge
B�B���c 0

0 1
2g0
B�B���v + i
BB � �v

� .

�22�

Here 
B= �e�� /2mc is the Bohr magneton and ge=g0+g�,
where g0�2 is the free-electron g factor and g� describes the
remote band contribution to the electron effective g factor gc.
In order to simplify our consideration, we assume that the
only spin-orbit contributions come from the interaction be-
tween conduction-band and valence-band states. Hence, the
Hamiltonian does not include any Rashba terms related to
the remote band contributions.

In the presence of an additional Zeeman Hamiltonian
�22�, the decompositions �19� and �20� are not exact. To take
into account first-order corrections coming from Eq. �22� one
has to replace �l with �l+�B in Eqs. �19� and �20�. Here
the correction term

�B � 
B��B��C1�l + iC2��̂ � �l�	

+ i
BB � �C1�l + iC2��̂ � �l�	 �23�

is by a factor of 
B�B� /Eg smaller than �l and it can usually
be neglected.

B. Electron stationary state in the stationary
electromagnetic field

We would like to compute the electron stationary state
with energy E in the stationary electromagnetic field. To this
end, we replace i��� /�t with �E−eV��, where V is the
scalar potential E=−�V. Then, the valence-band contribu-
tion takes the form
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�v��� = �� + �B, �24�

�� = − iPC1�����c + PC2�����̂ � ��c	 , �25�

�B � 
B��B��� + i
BB � ��. �26�

Here �=E−eV and the coefficients C1�E−eV� and C2�E
−eV� coincide with coefficients C1 and C2 given by Eq. �21�
after replacing Eg by Eg+E−eV. The resulting nonparabolic
equation for the conduction-band spinor function reads

��
1

2mc���
� + i�

�gc��� − ge	
4m

�� � �	 +

B

2
ge��B���c

+ iP��B = ��c, �27�

where again �=E−eV. The energy dependent electron effec-
tive mass mc��� and g factor gc��� are given by

m

mc���
= � + EpC1���, gc��� = ge − 2EpC2��� , �28�

where Ep=2mP2 is the Kane energy parameter. The contri-
bution of �B in Eq. �26� �the last term on the left-hand side
of Eq. �27�	 gives corrections to the first two terms, which
are proportional to a small factor �
BB� /Eg, and usually it
can be neglected.

For small energies ����Eg, the nonparabolic electron ef-
fective mass and electron effective g factor can be expanded
near the bottom of the conduction band

m

mc���
=

m

mc
− �p�, gc�E� = gc + �so� , �29�

where �p is the mass nonparabolicity parameter and �so is
the g-factor nonparabolicity parameter closely related to the
spin-orbit coupling constant,21,27

ap =
Ep

3
� 2

Eg
2 +

1

�Eg + ��2� = Ep�C1
2 + 2C2

2� , �30�

�so =
2Ep

3
� 1

Eg
2 −

1

�Eg + ��2� = 2EpC2�2C1 − C2� . �31�

Substituting the expansion of Eq. �29� into Eq. �27� and ne-
glecting the contribution of �B in Eq. �26�, we arrive at

��
1

2mc���
� +

e�

4m
�soE�� � �	 +


B

2
gc�����B���c = ��c.

�32�

Note that �c in Eqs. �27� and �32� is the original conduction-
band spinor and, hence, the normalization condition reads
����c�2�+ ���v�2�d3r=1. Expressing �v via �c with the help
of Eqs. �24�–�26� and keeping only the first-order terms in
��� /Eg and �
BB� /Eg, we obtain the approximate normaliza-
tion condition for �c,

� ���c�2 −
�2ap

4m
��c

��2�c + �2�c
��c�

+
�so

2

B�c

���B��c�d3r = 1. �33�

In the absence of external fields, this condition can be pre-
sented as

� ��c�2d3r =
mc

mc�E�
. �34�

C. Electric and magnetic polarizations in the Kane model

The continuity �Eq. �3�	 for the charge density � and the
electric current density J in the Kane model can be obtained
directly from the Schrödinger �Eqs. �16� and �17�	. A
straightforward calculation leads to the following expres-
sions:

� = e���c�2 + ��v�2� , �35�

J =
e�

2m
����c���c + �c

���c	

+ ieP��c
��v − �v

��c� + c � � M0, �36�

M0 = −

Bge

2
�c

���c −

Bg0

2 

�=x,y,z

�v�
� ��v�

− i
B��v
� � �v	 . �37�

Using the decomposition given by Eqs. �19� and �20� one
can separate convective and internal parts of � and J as �
=�c+�i and J=Jc+Ji, where internal parts �i and Ji are re-
lated to electric and magnetic polarization vectors P and M
via Eq. �9�. We neglect the contribution of �B in Eq. �23�
and obtain the following approximate expressions for �c, Jc,
�, and M:

�c = e��c�2 +
e�P

2
��c

����� − ������c	

+
ie�

2
� ��v

�

�t
� − ��

��v

�t
� +

e2V

2
��v

�� + ���v� ,

�38�

� =
e�P

2
��c

�� + ���c�, � = C1�v + iC2� � �v,

�39�

Jc =
e

2mc�− eV�
��c

���c + ���c���c	

+
�soe

2�

2m
�c

���V � ���c

+
eP�

2
��c

���

�t
+

���

�t
�c −

��c
�

�t
� − ��

��c

�t
� ,

�40�
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M = −
1

2

Bgc�− eV��c

���c −

Bg0

2 

�=x,y,z

�v�
� ��v�

− i
B��v
� � �v	 . �41�

It is important to note that the convective charge density �c
and the current Jc enter Maxwell �Eq. �12�	 for vectors D and
H, which are related to E and B by expressions �14�. Vectors
� and M in Eq. �14� describe contributions of a moving
Kane electron into the total electric and magnetic polariza-
tions, which are not taken into account by the material per-
mittivity tensors 	 and 
.

Finally, for an electron stationary state with energy ��� in a
stationary magnetic field one can apply the decomposition
given by Eqs. �24�–�26� to Eqs. �35�–�37�. Neglecting the
contribution of �B in Eq. �26� and keeping only the first-
order terms in ��� /Eg and �
BB� /Eg, we arrive at the final
expressions for the source terms,

�c = e��c�2 −
e�2ap

4m
��c

��2�c + �2�c
��c�

+
e�so

2

B�c

���B��c, �42�

� = −
e�2ap

4m
� ��c�2

−
e�so�

8m
���� � ��c − ����� � ��c	 , �43�

Jc =
e

2mc���
��c

���c + ���c���c	 +
�soe

2�

2m
�c

���V � ���c,

�44�

M = −
1

2

Bgc����c

���c. �45�

The obtained expressions for the source terms describe how
the nonparabolic conduction-band electron influences the ex-
ternal electromagnetic field. They are valid when the electron
energy in the external fields is much smaller than the band-
gap energy.

IV. LEAST-ACTION PRINCIPLE FOR SEMICONDUCTOR
HETEROSTRUCTURE IN EXTERNAL

ELECTROMAGNETIC FIELD

In Sec. III C, we found the effective charge density, the
electric current density, and the electric and magnetic polar-
ization vectors associated to conduction-band electrons. The
alternative approach is based on the Lagrangian formalism
and on the kp analog of the least-action principle derived in
Ref. 28. This approach is particularly efficient in applications
to abrupt heterostructures. It has two main advantages: �i� the
variation of the action provides equations of motion together
with boundary conditions at heterointerfaces and �ii� incor-
porating of external electromagnetic field is straightforward.
Here we extend the approach of Ref. 28 in order to include

the electron interaction with external stationary electromag-
netic field.

The time-independent effective-mass Lagrangian density
for 6 electrons with nonparabolicity is given by28

L�E� = E��c�2 −
�2

2mc�E�
���c�r��2 + LSIA�E� , �46�

LSIA�E� = −
i�2

4m
�ge − g�E�	 � �c

��� � ��c	 . �47�

In the presence of external stationary electromagnetic field,
the Lagrangian density is

Lel−EM = LEM + L�	� + LZeeman. �48�

Here the Lagrangian density LEM of the stationary electro-
magnetic field takes into account material permittivity ten-
sors 	 and 
 characterizing the material properties in the
absence of moving electrons,

LEM =
1

8�
�E�	��E� − B�

1


 ��

B�� . �49�

The Lagrangian density L��� can be obtained from Eqs. �46�
and �47� by replacing E with �=E−eV and −i�� with �
=−i��−e /cA. LZeeman corresponds to the conduction-band
Zeeman energy

LZeeman = −

B

2
ge�c

���B��c. �50�

We consider a planar semiconductor heterostructure con-
sisting of two bulklike regions A and B connected by a thin
boundary region � around the abrupt heterointerface �see
Fig. 1�. The envelope function components �c are defined
only in the bulklike regions of the heterostructure28,29 and
they obey the boundary conditions at z=−a and b. The ma-

eV eV

BA Π

E

z-a 0 b

τ

EcA+eV

EvA+eV EvB+eV

EcB+eV

EgA EgB

eV eVeV eV

BA Π

E

z-a 0 b

τ

EcA+eV

EvA+eV EvB+eV

EcB+eV

EgA EgBτ

EcA+eV

EvA+eV EvB+eV

EcB+eV

EgA EgB

FIG. 1. Sketch of a planar heterointerface between semiconduc-
tor layers A. Ec

A,B+eV and Ev
A,B+eV are the conduction-band bottom

and the valence-band top energies, respectively, in the regions A
and B. These energies are not defined in the boundary region �,
while the scalar electromagnetic potential V is continuous
everywhere.

THEORY OF INTRINSIC ELECTRIC POLARIZATION AND… PHYSICAL REVIEW B 78, 115304 �2008�

115304-5



terial parameters mc, gc, �, ge, Ep, and Eg may abruptly
change from the region A to the region B and they are not
defined in the boundary region �. The scalar potential V and
the vector potential A are continuous throughout the hetero-
structure and do not change inside the thin boundary region
�. The stationary fields E=−�V and B=��A do not have
any �-function components and they are subject to the
boundary conditions at z=−a and b. For the sake of simplic-
ity, we assume that the material permittivity tensors 	 and 

are the same in A and B. Then, the Lagrangian densities in
the bulklike regions A and B are given by Eqs. �46�–�50�
with the material parameters of the materials A and B, re-
spectively. Note that the energy E of the electron stationary
state should be replaced with E−Ec

A,B while E+Eg should be
replaced with E−Ev

A,B. Here Ec
A,B and Ev

A,B denote the ex-
treme energies of the conduction and valence bands in the
materials A and B, respectively.

The total action in the heterostructure is given28 by S
=
A,B�Lel−EMd3r+S�. Following the approach of Ref. 28,
one can show that the contribution S� of the boundary re-
gion in such a model depends only on the values of �c at
z=−a and b. A variation of the action �S=0 with respect to
�c

� �with electromagnetic potentials V and A assumed to be
the constant functions of the coordinates� in a standard fash-
ion leads to the bulk equation for the electron wave function
�c �Eq. �32�	 together with appropriate boundary conditions
at the heterointerface. The boundary-condition parameters
generally depend on the properties of the boundary region �.
For the “ideal” interface �a+b�→0 �see Ref. 28�, they can be
written as continuity conditions at z=0 of the conduction-
band spinor function �c=const and of the normal projection
v�= ��v�=const �here � is the unit vector normal to the inter-
face� of the effective velocity vector v,

v =
1

mc���
��c + i

�gc��� − ge	
2m

�� � �	�c. �51�

For the nonideal interface, the boundary conditions can be
expressed via the interface matrix that connects the compo-
nents of �c and v� at two sides of the interface. An example
of such boundary conditions for the model interface with
infinite potential barrier are considered in Sec. V.

The variation of the action �S=0 with respect to the elec-
tromagnetic potentials V and Ai, �i=1,2 ,3� �with the wave
function �c assumed to be the constant functions of coordi-
nates� leads to stationary Maxwell equations for D=	E
+4�� and H=B /
−4�M,

� · D = 4��c, � � H =
4�

c
Jc �52�

together with appropriate boundary conditions at the inter-
face,

�D�� = const, �H � �� = const. �53�

Keeping only the first-order terms in ��� /Eg and �
BB� /Eg,
we obtain expressions for the source terms �c and Jc and for
polarization vectors � and M, which are exactly the same as
given by Eqs. �42�–�45� of Sec. III. Thus, the two ap-
proaches, the approximation of Gordon-type decomposition

of the eight-band Kane model, and the least-action principle
for the nonparabolic electrons produce exactly the same re-
sults for the bulk semiconductor. In addition, the second ap-
proach gives general boundary conditions at the interface for
the envelope functions in the external electromagnetic field,
as well as the boundary conditions for the electromagnetic
field, with account taken for the electric and magnetic polar-
izations induced by the moving electron.

V. INTRINSIC ELECTRIC POLARIZATION OF THE
ELECTRON GAS IN A NARROW ASYMMETRIC

QUANTUM WELL

In this section, we consider the spin-orbit contribution to
the electric polarization, which is created by the in-plane
motion of electrons in a narrow asymmetric square quantum
well. In such a structure, the Rashba-type spin-orbit splitting
of the electron energy levels can appear in the absence of
external electromagnetic field �E=0 and A=0� due to the
asymmetry of the interfaces at z= �L.27,28,30 When the inter-
faces are modeled by infinite potential barriers �both in the
conduction and in the valence bands�, this asymmetry is re-
flected by the asymmetric boundary conditions,28

�c��L�

= � a��� m

mc�E�
��c

�z
+

ge − gc�E�
2

�� � k	z�c��
z=�L

,

�54�

where k= �kx ,ky� is the wave vector of the in-plane motion,
a�=a0 / t�, and a0=�2 /2Epm; where t+ and t− are real num-
bers. Here we consider only the case of t��0, which corre-
sponds to the electron energy levels En�0 at k=0 �n is the
number of the electron subband�. The electron wave function
can be written as

��r� = mc

mc�E�
fn�z���	� , �55�

where

fn�z� = C+ exp�iknz� + C− exp�− iknz� for�z� � L ,

fn�z� = 0 for�z� � L �56�

describes the electron quantization and kn=2mc�En�En /�2.
Constants C� are determined by the boundary conditions
given by Eq. �54� together with the normalization condition
�−L

L �fn�2dz=1. The asymmetry of the boundary conditions
�54� results in the asymmetry of the electron-density distri-
bution �fn�z��2 inside the well, as shown schematically in Fig.
2.

The function ��	�=��x ,y� describes the in-plane electron

motion and satisfies the equation Ĥnn�E���	�=E��	� with
effective nonparabolic Rashba Hamiltonian,

Ĥnn�E� =
�2�kn

2 + k2�
2mc�E�

+ �SIA�E��� � k	z, �57�

with the effective coupling constant approximated as28
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�SIA�E� =
�2

4m

mc

mc�E�
�ge − gc�E�	��fn�− L��2 − �fn�+ L��2� .

�58�

The second term in the Hamiltonian Ĥnn�E� describes the
effective intrasubband spin-orbit interaction caused by the
asymmetry of the interfaces. The model allows us to include
also the effective intersubband spin-orbit interaction consid-
ered recently in Ref. 31. It was found in Ref. 31 that in
symmetric wells the magnitude of the intersubband spin-
orbit coupling �12 between the first n=1 and the second n
=2 subband is nonzero and is comparable to the Rashba
constant. However, in the case of the asymmetric narrow
well, the intersubband coupling leads to a second power in k

correction to the Hamiltonian Ĥnn�E�, which is smaller than
the second term in Eq. �57� by the factor ��12k� / �E2−E1�. For
the sake of simplicity we neglect the intrasubband spin-orbit
coupling. In the presence of the external electric field E
= �0,0 ,Ez�, the effective coupling constant �SIA should be
replaced by �SIA+�R, where �R= �e�2 /4m��soEz is the
Rashba constant. Note that in this case, functions fn�z� and
the energy levels En should be calculated taking into account
the spatial dependence of the scalar potential V�z�=−ezEz.
As a result, the asymmetry of �fn�z��2 is caused by the asym-
metry of the boundary conditions as well as by the effect of
Ez. Although hereafter we will assume Ez=0, all results can
be readily generalized for Ez�0.

The eigenfunctions ��,k�	� of the Hamiltonian Ĥnn�E� are
given by

�k��	� =
eik	

2S
� 1

− i�k+/k � , �59�

where k= �k�=kx
2+ky

2, k+=kx+ iky, S is the cross section of
the quantum well, and �= �1 correspond to two spin-split
spectral branches. Their energies can be found from the
equation

�n,�,k = En
mc�En�

mc��n,�,k�
+

�2k2

2mc��n,�,k�
+ ��SIA��n,�,k�k . �60�

The spin-orbit interaction shifts the energy minimum of
the nth subband from En to �En−En0� �see Fig. 3�a�	, where
the energy shift En0 can be found from the nonlinear equa-
tion

En0 =
�SIA

2 �En − En0�mc�En − En0�
2�2 . �61�

In what follows, we neglect the nonparabolicity of the effec-
tive mass and of the coupling constant inside the nth subband
and assume mc��n,�,k��mc�En�=mn and �SIA��n,�,k�
��SIA�En�=�n.

Our aim is to calculate the electric polarization vector,

� = −
e�2ap

4m
� ��c�2

−
e�2�so

8m
��c

�� � k�c − �k�c�� � ��c	 . �62�

In equilibrium, we have �= �0,0 ,�z� and for the electron
state characterized by the quantum numbers n ,� ,k, we ob-
tain

x
y

z-L L

Ex
Jm

Jyz

|fn|2

Px

0

x
y

z-L L

Ex
Jm

Jyz

|fn|2

Px

0

FIG. 2. Sketch of a square asymmetric quantum well with infi-
nite potential barriers at z= �L. The asymmetric distribution of the
electron density �fn�z��2 and of the electric polarization �x�z� are
shown schematically. The spin Hall current Jyz and the induced
magnetic charge Hall current Jm flow in the y direction when the
electric field Ex is applied.

k kx=Px/Ex

E eF

E1
E1-E10

E2

E3

E2-E20

E3-E30

K - K + k0 2k0

eF

3k00

(a) (b)

k kx=Px/Ex

E eF

E1
E1-E10

E2

E3

E2-E20

E3-E30

K - K + k0 2k0

eF

3k00

(a) (b)

FIG. 3. Sketch of the electron energy structure in an asymmetric
quantum well �a� and the dependence of the electric susceptibility
�x=�x /Ex on the Fermi energy �F in �b� the spin Hall regime.
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�z
n,�,k�z� = −

e�2ap

4m

mc

mnS

� �fn�z��2

�z
−

e�2�so

4m

mc

mnS
�fn�z��2�k .

�63�

The polarization is inhomogeneous in the z direction and it
consists of two contributions. The first contribution is due to
the nonparabolicity of the electron effective mass and to the
asymmetry of the electron charge-density distribution in the
well. It does not depend on the in-plane vector and it is the
same for both spin states of the electron. In contrast, the sign
of the second contribution is opposite for branches �=1 and
�=−1. It is related to the nonparabolicity of the electron
effective g factor. Regardless of this difference, both terms
appear due to the interaction of the conduction-band elec-
trons with the valence-band states.

To obtain the full polarization created in the well, one has
to integrate over the equilibrium Fermi distribution corre-
sponding to the Fermi energy �F,

�z
eq�z� = 


n,�

S

�2��2� �z
n,�,k�z�d2k = 


n

�z
n�z� . �64�

At zero temperature T=0, the integration for each occupied
nth subband should be performed over 0�k�K�, where K�

are Fermi momenta for both spectral branches for a given n
�see Fig. 3�a�	. K� are determined by

�F = En +
�2K�

2

2mn
� �nK�. �65�

If the Fermi level crosses only the lowest spectral branch �
=−1 of the nth subband, the integration should be carried out
over K−�k�K+, where

K� =
�nmn

�2 �2mn

�2 ��F − En + En0� . �66�

For the Fermi energies E1��F�E2−E20, only the first
electron subband is filled and both spectral branches are
crossed by the Fermi level �see Fig. 3�a�	. Then, the integra-
tion over k and the sum over �= �1 give us the contribution
from the n=1 subband as

�z
n�z� = −

eap

4�

mc

m
��F − En + 2En0�

� �fn�z��2

�z

+
e�n�so

2��2

mnmc

m
��F − En +

4

3
En0��fn�z��2. �67�

For the Fermi energies E1−E10��F�E1, only the lowest
spectral branch of the first electron subband is filled and
crossed by the Fermi level �see Fig. 3�a�	. Then, integration
over k gives us the contribution from the n=1 subband as

�z
n�z� = −

eap�n

4�

mc

m
2mn

�2 ��F − En + En0�
� �fn�z��2

�z

+
e�so

2�

mc

m
2mn

�2 ��F − En + En0���F − En +
5En0

2
�

��fn�z��2. �68�

When the Fermi energy is increased, more subbands give a
contribution into the polarization and the final equilibrium
polarization can be found as �z

eq�z�=
n�z
n�z�.

Let us now consider the effect of the dc electric field Ex in
the x direction. We deal with two linear in Ex perturbations,

Ĥ�1� = − eExx , �69�

Ĥ�2� = − �e�2/4m��soEx�̂zk̂y . �70�

The second perturbation Ĥ�2� is related to the dependence of
the electron effective g factor on Ex and it describes an ad-
ditional spin-orbit coupling. The perturbation related to the
dependence of the electron effective mass on Ex can be ne-
glected as far as we assume Ex to be small and the size of the
sample in the x direction to be large.

The first-order correction to the in-plane wave function

caused by Ĥ�1� is

�k�
�1��	� =

�eExky

4�nk3 �k−��	� . �71�

The correction to the wave function caused by Ĥ�2� is smaller
by a factor of En /Eg and it can be neglected here. However,
we shall later consider the first-order correction to the spin-

orbit energy, which corresponds to Ĥ�2�.
We calculate the intrinsic spin-orbit contribution to the

electric polarization �x, which is linear in the electric field
Ex as

�x�z� =
e�2�so

4m


n,�

mc

mn
�fn�z��2

S

�2��2� d2k��k�
� �̂zky�k�

�1�

− �ky�k����̂z�k�
�1�	 . �72�

The result is �x�z�=
n�x
n�z�, where

�x
n�z� = −

e2mc�soEx

16m�
�fn�z��2

for En � �F � En+1 − E�n+1�0, �73�

and

�x
n�z� = −

e2mc�soEx

16m�

�2

mn�n

2mn

�2 ��F − En + En0��fn�z��2

for En − En0 � E � En. �74�

Averaging over z, ��x�z=�−L
L �x�z�dz /2L, and introducing

an electric susceptibility constant �x, we obtain
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�x��F� =
��x�z

Ex
= 


n

�x
n��F� . �75�

The contribution of the nth subband is given by

�x
n��F� = �0 = −

e2mc�so

32m�L

for En � �F � En+1 − E�n+1�0, �76�

and

�x
n��F� = −

e2mc�so

32m�L

�2

mn�n

2mn

�2 ��F − En + En0�

for En − En0 � �F � En. �77�

The dependence of the intrinsic electric susceptibility
�x��F� on the Fermi energy is shown in Fig. 3�b�. Remark-
ably, the electric susceptibility keeps the constant values
�x��F�=n�0 when both subbands �=1 and �=−1 of the nth
quantum size band En are crossed by the Fermi level �F and
the next En+1 band is empty. The value �0 of Eq. �76� is
independent of the subband number n and of the Fermi en-
ergy �F. The physical meaning of the finite intrinsic electric
polarization �x can be understood if one considers the spin-
orbit interaction of the moving electron induced by the ex-
ternal field Ex. This interaction is described by the perturba-

tion Ĥ�2� and the respective spin-orbit energy can be

calculated as Eso=�d3r
nk�����Ĥ�2����. It is easy to see that
this energy is given by

Eso = −� d3r�x�z�Ex = − �xEx
2 � , �78�

where �=2LS is the sample volume. On the other hand, the
intrinsic electric polarization �x can be related to the intrin-
sic spin Hall current Jyz corresponding to the flux in the
positive �negative� y direction of the electrons with spin par-
allel �antiparallel� to z when the dc electric field Ex in the x
direction is applied �see Fig. 2�. Indeed, by comparing the

definition Ĵij =−i�2 / �4mc���̂ j�i+�i�̂ j� of Ref. 15 for the spin
current operator with Eq. �72� one can see that �x�z�
�Jyz�z�. For the Fermi energy En��F�En+1−E�n+1�0, simi-
lar calculations lead to the averaged spin Hall conductivity
�yx= �Jyz�z��z /Ex=n�e� /8�, which for n=1 coincides with
the universal spin Hall conductivity value �e� /8� obtained in
Refs. 6, 7, and 11.

The above derivation of the intrinsic contribution to the
electric polarization �x�z� in the spin Hall regime allows us
to predict an appearance of the induced magnetic charge cur-
rent Jm in the y direction when the dc electric field Ex in the
x direction is applied �see Fig. 2�. Indeed, for the stationary-
state electron gas we have dM /dt=0, where M is the mag-
netic polarization vector, and, according to Eq. �11�, the in-
duced magnetic charge current Jm can be defined as

Jm = − c � � � . �79�

Here we assume that the sample is infinite in x and y direc-
tions and we do not consider edge effects. As electric polar-

izations �x�z� of Eqs. �73� and �74� are inhomogeneous in
the z direction, the y component of the intrinsic-induced
magnetic charge current is given by Jmy�z�=−c��x�z� /�z
���f�z��2 /�z. Averaging over z, we obtain the mean intrinsic-
induced magnetic charge current,

�Jmy�z = �
−L

L

Jmy�z�dz/2L = �yx
m Ex, �80�

�yx
m ��F� =

�Jmy�z

Ex
= 


n

�yx
mn��F� . �81�

Here �yx
m �z� is the average magnetic Hall conductivity sum-

marized over all electron states. The contribution of the nth
subband �yx

mn is given by

�yx
mn��F� = −

e2mc�so

32m�L
��fn�− L��2 − �fn�L��2�

for En � �F � En+1 − E�n+1�0, �82�

and

�yx
mn��F� = −

e2mc�so

32m�L

�2

mn�n

2mn

�2 ��F − En + En0���fn�− L��2

− �fn�L��2�

for En − En0 � �F � En. �83�

The dependence of the intrinsic magnetic Hall conductivity
�yx

m ��F� on the Fermi energy is very similar to the depen-
dence of the intrinsic electric susceptibility �x��F� on the
Fermi energy, which is shown in Fig. 3�b�.

VI. CONCLUSION

In conclusion, we have considered the eight-band Kane
model for the conduction-band electrons moving in the ex-
ternal electromagnetic field and showed how the Gordon-
type decomposition can be adapted to this setting. This ap-
proach allowed us to derive the source terms for the Maxwell
equations and the electric and magnetic polarization vectors
related to a moving electron. We have also derived the effec-
tive kp Lagrangian for a nonparabolic conduction band and
in the presence of the external electromagnetic field. In this
way, we obtained boundary conditions for the envelope func-
tion and electromagnetic fields at the interfaces. These re-
sults give a solid basis for the analysis of the spin Hall effect
and other spintronic effects in semiconductor heterostruc-
tures. As an example, we have obtained the expression for
the electric polarization induced by the in-plane motion of
the nonparabolic electrons in the asymmetric quantum well
with infinite potential barriers and have calculated its depen-
dence on the Fermi energy. We have predicted and calculated
the intrinsic-induced magnetic charge Hall current in the spin
Hall regime. This magnetic current can be detected via the
electric-field induced outside the sample.20 We are going to
discuss the relevance of our results for the fundamental ques-
tions concerning the spin Hall effect.
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First, we discuss the definition the spin Hall current.
At present, three different definitions of the spin current

operator Ĵij were suggested in the literature. They are the

following: �i� the conventional definition6,7,10,11,13,14 Ĵij

= �� /4���̂ jv̂i+ v̂i�̂ j� �where v̂i=1 /���Ĥ /�ki� is the velocity

operator for the Hamiltonian Ĥ�; �ii� the modified definition

Ĵij = �� /2�d�r̂i�̂ j� /dt proposed in Ref. 12, and �iii� the defi-

nition Ĵij =−i�2 / �4mc���̂ j�i+�i�̂ j� obtained in Ref. 15 based
on the relativistic approach. We note that the definition �iii�
ensures the relation between the antisymmetric part of the
current ��=	���J�� �here 	��� is Levi-Civita antisymmetric
tensor� and the electric polarization ��.15 It is also with this
definition that the universal conductance �yx= �e� /8� remains

unchanged when the Ĥ�2� perturbation is taken into account.
Finally, with this definition the intrinsic electric polarization
�x is proportional to the intrinsic spin Hall current Jyz and
the latter can be related to the spin-orbit energy Eso. This fact
also plays an important role in the discussion of the cancel-
lation �or noncancellation� of the total spin Hall current in
the stationary regime.

The stationary regime is possible only in the presence of
scattering or disorder. In addition to the intrinsic spin Hall
current, the total spin Hall current Jyz includes other contri-
butions caused by the asymmetric scattering1–3 and by the
generated nonequilibrium spin density Sy.

14,18 It was
shown7,8 that for the standard Rashba model, when the spin-
orbit coupling of the electron gas is described by the term

ĤR=�R���k	z, the total spin Hall current Jyz vanishes. This
result was explained by the “cancellation theorem” in Ref.

10. It states that the spin torque Ty = �i /2��ĤR , �̂y	 is zero in
the stationary regime. As, according to Ref. 10, Ty �Jyz for
the standard Rashba model, the total spin Hall current van-

ishes. However, for more general model describing the spin-

orbit coupling of the electron gas as ĤR=Q���̂�k̂�, where Q
is a second-rank pseudotensor, one obtains14

Ty =
i

2
�ĤR,�̂y	 � 	y�jQ�iJij . �84�

It follows from Eq. �84� that if the perturbation Ĥ�2� of Eq.

�70� is included into ĤR, then an additional contribution to
the spin torque Ty arises and, hence, Jyz does not vanish.
This additional contribution 1 /2Ex�z

eq to the torque Ty was
also obtained in Ref. 15 on the basis of the relativistic ap-

proach. We note that the perturbation Ĥ�2� of Eq. �70� comes
from the nonparabolicity of the electron effective g factor
caused by the interaction with the valence-band states.

The direct relation between Jyz and �x allows us to relate
the intrinsic spin Hall current with the additional spin-orbit
energy Eso of the electron in the external electric field Ex. If
we assume that this energy is determined by the intrinsic
properties of the system and that it is not affected by the
elastic scattering, we conclude that it is exactly the intrinsic
parts of the spin Hall current of the electric polarization �x,
which does not vanish in the stationary regime. The extrinsic
current is cancelled in the way discussed in Ref. 14 and it
does not contribute to the total electric polarization �x.
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